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ANALYTIC STUDY OF THE HIGH-FREQUENCY IMPEDANCE?*

S. A. Heifets
Continuous Electron Beam Accelerator Facility

12000 Jefferson Avenue, Newport News, VA 28606

ABSTRACT

The interaction of short bunches with the beam environment is described using simple
models. The impedances of typical elements of an accelerator structure are obtained.
The cross-talk between elements, the impedance of a periodic array, and the effect of
tapering are discussed. The results allow fast estimate of the high frequency impedance
with reasonable accuracy for a cavity of arbitrary shape and give a guideline for impedance
optimization.

INTRODUCTION

Stability of 2 bunch in an accelerator in the relativistic case, where direct interaction
between particles is negligible, depends mostly on the interaction with EM wake fields,
generated in the system at all varjations of the beam pipe cross-section. The wake fields
are responsible for such effects as additional heat load, change of energy spread, emittance
growth, and collective instabilities.

The wake field can be considered as a response of the system to an external per-
turbation, which is the beam current. In the linear approximation the Fourier frequency
harmonics of the field and of the current are proportional, and for a given frequency the
coefficient of proportionality, the impedance, depends only on the geometry and the wall
resistivity. The wake potential, related to the impedance by Fourier transformation, de-
scribes the bunch-environment interaction in the time domain. The impedance and wake
potential are important characteristics of an accelerator.

The impedances can be calculated numerically. The powerful numeric codes such as
URMEL, TBCI, MAFIA, and some others are available. Nevertheless, some estimations
can be done with reasonable accuracy analytically. This capability is not only useful for
rough estimations at the first steps of the accelerator design but also gives a guideline
for the optimization of the system. Analytic results are especially useful for very short
bunches with a bunch length of a few picoseconds and a frequency content spread up to
hundreds of gigahertz, where numeric calculations are limited by an increasing number of
mesh points.

In this paper we study the high-frequency behavior of the impedance using simple
models based on an approximate formulation of the boundary conditions. In the beginning
the impedance and wake potential are defined. After that the impedances are estimated
with a simple model for two typical cases: an abrupt change of the beam pipe radius (the

* A talk given at the Workshop “FEL’s and Storage Rings”, University of Dortmund,
Dortmund, 9/1988



case referred to later as a step) and the pill-box cavity. In both cases cylindrical symmetry
is assumed. These two cases are of interest because most of the impedance generating
elements may be approximated by one of them. The elements without cylindrical symmetry
such as vacuum ports usually give a smaller contribution to the total impedance. The
model is used to discuss the cross-talk between impedance generating elements, the case of
the periodic array of cavities, and the effect of tapering. The analytic results are compared
whenever possible with results obtained by more rigorous methods and with calculations
with TBCI.

THE BASIC FORMULAS

The longitudinal é-functional wake W, by definition 12 gives the energy loss AE; of
a particle that follows a point-like bunch with the total charge Q = eN; at the distance s

AE; = eQW{(s), s>0. (1)

According to this definition, W/ is given by the radiated part of the longitudinal electric
wake field E coherently excited by the particles of a bunch:

AE(s) = eQW{ = -—e/dtﬁ'- E(z = vt — s,1). (2)

Note, that the field in the integrand does not include the field of the bunch itself. The
radiated part of the field satisfies the homogeneous wave equation and is zero in the straight
beam pipe, provided we are not interested in the radiation of the bunch entering or exiting
the beam pipe.

Let us define the Fourier transformation as

dw

E(t) = E;E(w)e_‘l“".
Then o
wie) = [ e aw) ©)
where the impedance Z;(w) is
Zi(w) = —%fdzE:’(z,r)e_‘“"/". (4)

From the casuality principle it follows that W(s) = 0 for s < 0. Hence, Zj(w) may
have poles in the complex plane of w only for Im w < 0. Narrow-band impedance can
be expressed as a sum of Breit-Wigner terms, each of which describes a mode with the
frequency w,, the decrement vy = wx/Q» and the loss-factor x,

1 1
— + ;
W —wy + v W+ wy + 17

Ziw) =1 ) xal )- (5)
A



According to Eq. (3) the wake in this case is given as
wWi(s) = 2 WSy e—asfv
£ =23 con(%3)e ©)
In Eq. (6) we have assumed that s > 0. Fors =0
Wta('s) = Z Xx-
A

The energy loss into a single mode for a particle in 2 §— function bunch with Ng
particles is
AE) = e?Ngx,.

The loss factor xa can be found if the eigenfunction of the mode E are known from the

relation
_ 2

To4Uy’ (7)

where
Vi = fdze_"sz;\(r, z)

and U) is the energy, stored in a mode. The factor x is proportional to the ratio of the

shunt impedance r/Q
xa=oIx (8)
4Qa

and, practically, can be calculated by the numeric code URMEL. Note that URMEL defines
r in such way, that factor 1/2 has to be used in Eq. (8) instead of the factor 1/4.
The average energy loss k; of a particle in a bunch with longitudinal density p(z2),
f pdz=11is
AE,;
eQ

For a Gaussian bunch with rms < 22 >= ¢? the density

k=< B8 [ dzydzap(21)p(22)WE (21 — 22). (©)

has Fourier harmonics

and k; can be written as o
b= [ 2228 nti (10)

For a train of bunches the wake fields excited by all bunches preceding the test particle
have to be taken into account. The interference of these fields changes the loss by the
factor F(ksp/2Q,ksp}, where

sinh =
cosh z —cos y

(11)

F(:E,y) =

3



and sp is the bunch spacing. If the Q-factor is large, @ > 1, and there is resonance
excitation ksp = 2mn, the loss can be substantially enhanced by F ~ 4Q/ksy. This
situation can occur for beam current monitors which use a harmonic of the fundamental
frequency k = nky, kf = 27 /sp.

The transverse 6-functional wake gives the average transverse kick caused by the wake
field of a bunch:!

Wi (s,r) = % f do(By + (7 % B)L)otmasn. (12)

The transverse impedance Z| is Fourier related to W

iZ) (r,w) = % / dz(E, + i—(a’ x B))e /v, (13)

In modal analysis W) can be expressed similarly to Eq. (6)

W = 22;{1 sin(wys/v). (14)
A

Notice, that W% =0 at s = 0.
The transverse loss x) is given by the eigenfunctions of the modes similarly to Eq. (7):

__C_[VJ_ Vy (r') Valr)

A ,
X1 = wi U, lr=rr- (1)
The transverse loss is defined as
_ V r — du 2 _
ky =< —>= :[ 2ﬂ_aha(lc)] Z,(r =a,w) (16)

There are several general statements on the impedances. First, the wakefield W (s) has to
be real. Hence, Z*(w) = Z(—w*). In particular, the imaginary part ImnZ(0) = 0. Secondly,
as was mentioned before, from the casuality principle it follows that Z;(w) may have poles
in the complex plane of w only for Im w < 0. The Cauchy theorem gives the dispersion
relations between real Z’ and imaginary Z” parts of the impedance:

1 o dw’ Z"(W")

! = —
Z(w)"rr cos W —w
LD T
zn(w)z_lf d“"z(“’).
TS oo wW—w

Here the integral is taken as a principal value. Hence, the real part of the impedance
defines the imaginary part.



The Panofsky-Wenzel theorem?® relates the longitudinal and transverse wakes for a

given mode:

J
E—WJ&"‘\ = V_LW;?,\. (17)

It can be easily deduced from the definitions Eq. (4) and Eq. (13) using the Maxwell
equation tkB = V x E. Eq. (17) gives after the Fourier transform1

Z, = ng_Zt- (18)

Another theorem, given by T. Weiland4, shows that the radial dependence of the
impedances in the ultrarelativistic case is known. To prove the theorem, it is enough to
notice, that the radiated part of the EM field satisfies a homogeneous wave equation

AEY + K’E* =0

and that for ultrarelativistic particles the 1mpedances are given by the synchronous com-
ponents of the field:

E¢(k,r,$) = f dzE? (z,r, ¢)e*2,

The azimuthal components

B¢ (k,r,¢) = > _ Eo™(k,r) ™9

satisfy in the ultrarelativistic case the equations
m2
(Ar — —) B (k1) = 0
r

where
1 J a

T Yor or
The field components have to be finite at r = 0. This gives

Zi(k,r) ox EZ™(k,r) = w(k)r™
The components defining the transverse impedance are

Zo(kyr) o [Blk,r) + 10 x B(k,r)}om™ = —%wm(k)r"“

Zy(k,r) =1Z.(k,7).

1 J.Bisognano noticed that a §(w) functional term may be added to the right side of
Eq. (18). The transverse wake has in this case a time-independent part.
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All components are given by the same functions wm (k). Therefore, the transverse impedance
can be deduced if the longitudinal impedance is known in accordance with the Panofsky-
Wenzel theorem. The main contribution to the longitudinal impedance Z; gives the
monopole mode m = 0 and does not depend on r. Therefore, the integration in the
right-hand side of Eq. (4) can be performed with arbitrary offset along the beam pipe
axes. The convenient choice of the offset is the beam pipe radius. In this case the integra-
tion in Eq. (4) may be performed only in the cavities, because of the tangential component
of the field E, = 0 on the perfectly conductive walls.

Recently R. Gluckstern and B. Zotter have given a theorem that the impedance of &
rotationally symmetric cavity is independent of the direction in which the beam travels20,

The modal analysis based on the Eq. (7) and Eq. (15) is useful for narrow-band
impedance for frequencies below or close to the beam pipe cutoff. In the high frequency
extreme a large number of modes become important. It is adequate in these cases to use
diffractional models. In the next section the model based on the approximate formulation
of the boundary conditions is described in the high-frequncy limit 1 <« ka < ~*

For convenience we give the relation between different units:

1V/pC =111 em™1

SIMPLE MODELS FOR HIGH-FREQUNCY IMPEDANCE

A Bunch in Free Space and in a Beam Pipe

The field of a free particle with the charge e moving with velocity v in z direction is
the solution of the wave equation

47w —
Jw

AE, + k*E, = 4nVp,, — =

where k = w/c and the Fourier components of the current }':,, = Zj, and density p, are
o= epFL)™, g =dufv, [ o(FLL =1,

For a point-like particle

2
2Zer —2ter Ko(rr)eik‘/ﬁ

E,,= K, (rr)ei"’/ﬂ, E,.=

T

where 8 = v/c and = k/B~. This field propagates synchronously with the particle.
For an ultrarelativistic particle E, , = 0. E, , is exponentialy small for r > 4/k and

— 2e tkz
w,yr = ——¢€
r

for r<~/k. ‘ (19)

* It is easy to see that for ka > -y impedances are exponentially small. Perfectly con-
ductive walls are assumed everywhere.



The total energy flow across the plane z = const is given by Pointing vector
(e =) =] c — = ¢ (==} oo d‘-l)
W = dt 27rdr—(E x = — 2nrd — 2,
f_ /0 g ExB)= L [Tomar f_ B (20)

With E,, , given by Eq. (18) the integral diverges at small r:

ey

"min

W ~

If rmin is the classical electron radius ro = 2 /me? the energy of the field synchronous
component is of order of energy of the particle W ~ E and actually depends on the
definitions of the electron mass and of the charge of a free particle.

For a free rigid bunch with rms bunch length ¢ and the total charge Q = ¢2Npg the
integration over frequencies in Eq. (20) is limited to ¥ < 1/o. The main contribution is
given by the area |k| < 1/0, 0 < r < |7| where the fields of particles are added coherently.
That gives the energy flow per partlcle

el 1 o 2
NBe (/' dr /‘ ﬂz) _ Nge (In Yo +1).
tT

rr 2no Tmin

For a particle in a pipe with the radius a

Bor = E!I[Kl (rr) + Iy (rr) —F—= ffo((‘rai)] ikz

Ko (Ta) ik
K TRE
[Ko(rr) = Io(re) T e
The first terms here are the same as for a free particle. The second terms give the field of
the image current in the beam pipe wall. They are small for v — oo and the field is the
same as for a free particle. For the radius a < ~o the field energy of a bunch per particle
is

—2ter?

Eu: =

W = a

N 362
In( .

2o min

If the pipe radius is changed from r = a to r = b > a the energy of the synchronous

component of the field increases. It corresponds to the energy loss per particle®

Npe? b
ol —. (21)

AE =

Impedances of a Cavity and a Step

Let us consider now a particle exiting out of the beam pipe which is attached to a
perfectly conductive plane at z = 0. The total field at z > 0 is the superposition of the
synchronous component and the radiated field:

— 00

Eypr = 2_:1:11'1 (rr)e’= +/ qdqAx(q)J: (gr)e*VF -, (22)

7



Here Ax(—g) = Ax(g) and the path of the integration goes in g-plane above the cut for
g > k and below the cut for ¢ < —&.

The field has to be matched to the field in the pipe at z = 0. It would give an integral
equation for Ax(g). Instead, we neglect the reflected wave in the pipe. That can be done
for E, component only, because the z-component of the incident wave in the pipe is zero
in this approximation. That is why we choose the r component of the field for matching.
In this approximation the field in the pipe is given by Eq. (19) and the matching gives the
condition

/ 0dgAx(0) 1 (ar) = ~ 26(r ~ o) (23)

where #(z) = 1 for z > 0, #(z) = 0 for z < 0. Here we used the approximation K, (rr) =
1/(rr) for the significant r, r < «y/k. Equation (22) means that the radiated field is defined
by the image charge on the surface r > a,2 = 0. To describe a cavity with a radius b > a
the only requirement is to change the right hand side of Eq. (23) which is not zero only for
a < r < b. The exact boundary condition at r = b for a large cavity is not crucial, so that
Eq. (22) is still a good approximation. We consider hereafter a cavity as a more general
case. Orthogonality of the Bessel functions gives Ax(q) (¢ > 0):

,, .
ax(a) = =% [ drsa(ar) =~ Z{olge) - Jo(ap)] (24

cq
The z-component of the diffracted wave can be obtained now from Egs. (22), (24) and
divE, = 0:

E,.= e'**F(ka, kr, kz) (25)

2iek
c

where

F(ka,kr,kz) = /0 ” -\/-%[Jo(kaz) — Jo{kbz)]|Jo (krz)e***(V1-22-1) (26)

For ka > 1 substantial contribution is given by small z < 1. To find the impedance we
integrate E,,.(r = a) given by Eq. (25) over 0 < z < g¢:

ZO ha dy b _‘-A:yz
Zik)=— [ —Jo®)Jo(y) ~ Jo(=9)](1 — ¢ ) (27)
T 0 v a
where A? = g/2ka? and Z, = 4r[c = 3770Ohm. It can be estimated easily:

1';: Alm for A <1

Zi(k) = Zo Llnd forbfa>r>1 - (28)
zInb/a+ 1 for A >b/a

For ¢ < ka? (we call this case “a cavity”)

Zi(k) = (1+ z')i‘%"Z }g’;. (29)



For kb? > g > ka?

27

If ¢ is large, the cavity radius b becomes important. For g > kb?

Zi(k) = 2 In( 7). (30)

Zy, b
Z(k) = —ﬂ—ln(;). (31)
We call this case “a step”.
The real part of the impedance gives the energy loss Eq. {10). If go/a? < 1 the loss
is given mostly by the high-frequency part of the impedance

k= E(;# ;rg;, r—(lw/i) = 1.154. (32)

The low frequencies k < g/a? give small additional contribution 2¢/ma?.
If go/a? >> 1 the loss given by high-frequency part of the impedance is exponentialy
small and the main contribution is given by the the low frequencies k < g/a?

1 go
k= ——=In(=).
1= ——= ln(m2 (33)
For a step g has to be replaced by kb?. It gives
2 b
ki = —— In(~
! oyT n(a) (34)

which is different from Eq. (21) only by a numeric factor.
The difference between the result for a cavity and the result for a step corresponds to
two different regimes of diffraction. For small z < kr? the transverse size of the diffracted

71’;, i.e., Fresnel diffraction.

For large z the Fraunhofer diffraction takes place for which r ~ z/ka, @ ~ 1/ka. For a
step all waves with k < 1/0 are diffracted in the Fraunhofer regime giving Eq. (31). Fora
cavity Fraunhofer diffraction takes place only for long waves with k < g/a? < 1/o giving
Eq. (29).

Equation (29) was obtained by Lawson? for a single particle and by G. Dome!? who
conjectured that the radial field in the cavity at r = a is the same as that in a pipe.
This assumption was clarified in our paper!! where rigorous matching was carried out and
the correction to Eq. (29) was estimated. Equation (29) was confirmed also in numeric
calculations!? and in diffractional models.5:8:7

Impedance of a step was studied by numerical solution of the truncated system of
equations obtained by the matching method.!3 It is shown in this paper that impedance
for high frequencies is approximately independent of frequency. It is substantially different
from zero only for a particle entering a wider pipe, whereas the impedance is almost zero
for a particle entering a narrower pipe. For small frequencies, however, the impedance in

wave increases as r ~ \/% and the angle of diffraction 8 ~

9



the last case is negative giving some total energy gain. This acceleration reflects attraction
of a particle by the image charge in the wall of the cavity. Impedances of the two steps
are different because the waves generated in two cases propagate in opposite directions.
Although both waves take out some energy, in the first case the energy of the field is taken
out of the energy of a particle, whereas in the second case the wave carries out the excessive
energy of the synchronous component of the fieid.

We checked!* Eq. (29) with the code TBCI with parameters chosen to be close to
CEBAF parameters for FPC (a=3.5 cm, ¢==2.5 cm, cavity radius 6=5.65 cm), HOM
(@=3.75 cm, ¢g=3.75 cm, b=5.5 cm) and {3) gate valve (a=1.75 cm, g= 2 cm, b= 3.5
cm). In all three cases the dependence of the average loss vs rms bunch size in the range
¢ = 0.75 mm — 1.5 mm corresponds to Eq. (29), and numeric agreement is within 10%
accuracy.

The transverse loss can be estimated using Eqs. (16), (18), (4) and (25). Note that

OF (ka,kr,kz) _ 10F(ka,ka,z)
ar r=e T g da

Equation (16) takes the form

— li e ﬁe_kzaj

k o
+ ada f, =

g
/ dzRe F(ka,ka,z).
0

For the estimate we truncate the integral at k < 1/0. Because k; (¢ = 0) = 0 the integral
can be replaced by the integral over k > 1/0. Using Eq. (27) for F we obtain

* dk. 1 [min(g,ka?) s 2 2a
= — —8(g — — - —)].
ks _/1/,, 1ra[ka,2 rk g~ ka )(ka, g )

For a cavity, ¢ < e?/o,
1
k| o a—a\/wga.

Numerically!4 the transverse loss in the form

1
ki = V790 (35)

agreed with TBCI with very good {15%) accuracy. If ¢ >> a?/o the main contribution is
given by

2 go
The simulations with TBCI'* confirmed that k; decreases logarithmically for long bunches,
whereas it increases with o according to Eq. (35) for short bunches.

Equations {32-36) are very useful for the fast estimate of the impedances because a
major contribution is given by the structures which can be approximated as a pill-box

10



cavity or steps. Numeric analysis with TBCI confirmed that the transition from a regime
of a cavity to the regime of a step depends on the parameter!4:15

2g0
p= G-ai (37)
In particular, for p < 1, impedances do not depend on the cavity radius. Energy loss
decreases with o as 1/\/o whereas the transverse impedance increases as Vvo. Forp > 1,
qualifative dependence on the parameters is in agreement with the formulas for the step
regime. Unfortunately, the available version of TBCI (3. x 10° mesh points) does not allow
us to perform more comprehensive verification of the Eqgs. (32-36).

Another problem, very similar to what we considered, is the impedance of two semi-
infinite pipes: r = a for 2 < 0, and r = b for z > 0. This problem is probably the only
known problem which was solved exactly.!? It is easy to see that this problem is equivalent
to a problem of a single washer a < r < b at 2 = 0, which gives the boundary condition
Eq. (23). Therefore, our results for a washer also have to be valid for this problem. This
is indeed the case. 19

Cross-Talk Between Cavities

The wake field generated in one element of an accelerator propagates into the adjacent
elements downstream of the system and interfere with the local wake fields. Even if the
impedances of all elements, considered as independent, are known it is not clear in general
how the interference affects the impedance of the whole system. We consider two examples:
two adjacent cavities and, in the next section, the periodic structure as the extreme case.

Let us consider two adjacent cavities with the lengths (g, and g;) and radii (b and d)
correspondingly, so that the radius of the system is

r=ea,2<0; r=b0<z<g;; r=d,91<z<g1+g2; r=a, 2> g +gs.

For simplicity we consider d >> b > a and take d — co. The radial component of the wave
diffracted at z = 0 is the same as for a single cavity:

2¢ek

; e*2 P (2,7) (38)

E rw —
where

F, = f dz{Jo(kaz) — Jo(kbz)|Jy (krz)e**(V1-22~1} = o< ;5 < g,. (39)
0

The field at z > g; has the same form as Eq. (22), however, the matching condition at
z = g, has to take into account the wave Eq. {38). That gives the diffracted waveat z > ¢,
in the form of Eq. (38) with

F, = / dzJy (krz)e* (V122 =1 7o (kaz) ~ Jo(kbz) + Jo(kbz)e~ ko1 (V1-22-1)) (40)
0

11



The z-component of the field for g; < z < g3 is given by Eq. (25) where

o d . ,
F= /0 ——f\/;__»%Jg(km)e‘k‘(\/1_“2“1)[Jg(kaz) — Jo(kbz) + Jo(kbz)ethar(v1-22-1)]

(41)
and by Eq. (25) and Eq. (26} for 0 < z < g;.
Let Z(g,a,b) be the impedance Eq. (28) of a single cavity with the length g, the cavity
radius b and the beam pipe radius a. The longitudinal impedance takes the form

Z;(w) =Z(gl +gg,a,b)+Z(gg,b,d)+6Z (42)

where the last term describes the cross-talk between cavities:

2t
cka?

§2(w) = Z(g2,0,b) — /0 " iz fo "~ sdalJo(z) — Do 4y

The estimate of Eq. (43) shows that for a “cavity regime” §Z gives a correction which
cancels the second term in Eq. (42). Hence, the total impedance in this case is the
impedance of the cavity Z(g; + g2,a,b). This confirms the statement that the impedance
does not depend on the shape of the cavity?! and is true for the parameters of the cavity
that correspond to the “cavity regime”.

Periodic Array

For an array of cavities where the number of cavities is large, the interference can be
enchanced and can drastically change the impedance. Let us consider a periodic array of
diaphragms with the iris radius a separated by the distance L. The field at the iris is the
sum of the field of a particle Eq. (19) and the diffracted wave f(k,r):

E,r=Ze** 4 —Z-C-f(k, r)ei*z, (44)
r c

Matching the field Eq. (22) between irises and the field Eq. (44) defines the coefficients
A(q) and the diffracted field between diaphragms:

o0 a
Er(z,r) = —f gdqJy(gr)e'*V "’“"’[fﬁjo(qa) - -25.[ rdr f(k,r)J1(gr)]. (45)
0 0
At z =L, r < a it follows from periodicity, that
rad 2e ikL
E;*(L,r) = —c—f(k,r)e . (46)
This gives the integral equation for f(k,r):

[k, r) = —/:o qul(qr)Jo(qa)e“‘Lq2/2k+/; gdgJy (qr)c_"L‘f/zk/D r'dr’ f(k,r")J1(gr").
(47)

12



Note, that f(0) = 0.
Equation (47) can be simplified using!®

o0 .
f qrqur)\(qr)J,\((,,"r")e_""""'z/2 = ;Jx(rr'/v)e'f'?('z"'":)‘zi’“\ (48)
0
to the form
Vrflk,r) = —-\/F/ .:iq.;'l(qr).]'c.(qa)e""'l“’z/z'c +/ dr' U (r, "\ f(k,r'). (49)
0 0

Here ) k
U(r,r) = ‘“ff\/ rr’Jo(zrr’)ei‘z'"r(f’+r”)_

The function ¥ is a sharp function of (r — r’)

Blrr) = \/%e—"%“f“'“")’- (50)

For ka?/L > 1 ¥(r,r’) represents the é- function
lim(k — oo)¥(r,r') = §(r — r')

and Eq. (49) gives in this limit af{a) = —1. Therefore, the radiated field E, , at the iris
increases from f = 0 at r = 0 to f ®= —1/a at r = a and decreases as —1/r for r > a.
For a single cavity E, , has the discontinuity at r = a changing from zero to —1/a. Here,
we introduce the function

J r
E_-rf(k,r) = —A\/;F(a —-r), (51)
where
A=1+af(a). (52)
It satisfies the integral equation
Fla—r)=¥(a,r) + f dr'F(a —r')¥(r,r") (53)
0

with the same kernel ¥ as in Eq. (49).

We solved Eq. (49) and Eq. (53) numerically for different frequencies k. The typical
behavior of the function rf(k,r) is depicted in Fig. 1. The parameter A(k) has been found
from these calculations and its dependence on ka?/2L is shown in Fig. 2. It scales as

dnL

Insignificant oscillations of A(k) have been found also in the reference!?’. The function
F(a — r) oscillates rapidly. (See Fig. 3)
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Equation (45) and divE = 0 define E.. This gives the impedance per period of the

array:
o0
d .
2iw) = 2 [~ 253 (ga)(emine
€Jo ¢
2 (% dg —éLg? 2k T ' '
- —&—Jo(qa) (e7* ™ /2%F —1)[(1 — A)Jo(ga) — A | dr ;Jo(qr JF(a —r")]. (55)
0 0

The first line is the impedance of a single cavity. The rest is the contribution of the field
f(k,r) on an iris. The first term in the brackets cancels the single cavity contribution.
The estimate of the term with F(r) shows that the last term in brackets is small. The
remaining term has the same structure as that for a single cavity, but has the additional
factor A ox 1/k. Hence, the impedance of the periodic array decreases with frequencies as
k=3/2, For the real part we get

2
Nz

whereas it goes down as k—1/2 for a single cavity. The k—3/2 behavior is the main result
of the optical resonator model.®

ReZ(w) = 2, (E{:—z)alz (56)

The difference in the w dependence of the impedances obtained with the optical res-
onator model and for a single cavity has been explained in our paper.!” The impedance of
the array with the arbitrary number M of periods is given in a closed form by an approx-
imate solution of the exact system of equations obtained by field matching. It is shown

15



that for M < ka?/L the impedance per period is the same as that for a single cavity. The
length ML =~ ka? is a typical coherent length of waves radiated with the Fraunhofer angle
k/a along the axis. The same expression for M > (ka?/L)3/? gives the impedance of the
optical resonator model. The transition from the regime of a single cavity to the regime
of a periodic array takes place for M in the interval ka?/L < M <« (ka?/L}*2. For an
accelerator with fixed length ML > ka? the impedance behaves asymptotically as k—3/2,

Tapering—Comparison with the Diffractional Models

If a jump of a beam pipe radius is not abrupt, but tapered, the losses become smaller.
There are no analytic results available on the effect of tapering today. Simulation with
TBCI shows!4 that long smooth tapering can reduce the energy loss several times if bunches
are not too short. From the results of the previous discussion we can expect that a
taper affects the waves with small k for which the Fresnel diffraction angle 8 ~ 1/+/ka is
comparable or larger then the tapering angle.

Here we give a simple model which confirms this statement. This also gives us the
opportunity to discuss the diffractional model of high-frequency impedances.®7 The radi-
ated field satisfies the homogeneous wave equation. Hence, the radiated field in a volume
is defined by its value on the surface around the volume:1#

E, = f dS'[ikG(i" x B,) + (W E,)V'G + E,(7'V)G — #'(E,V'G)) (57)

where 17 is the unit vector normal to the surface pointed inside of the volume and

skR
G(r,7) = z—ﬂ_-ﬁ, R=|f—¥|=vV{(z—2)2+r24++'2 _2rr'cos ¢

is the Green’s function of the wave equation
(A + k)G = —6(F— 7).

It can be represented as well in the form

. oo oo
G= 8—3 f dge' == Jo(rs) HSV (r's)+2 Y T (rs) HLD (+'s) cos mglo(r' —r) +(r 1)

TJ—oo m=1

(58)
where s = 1/k? — ¢2 and the path of integration goes below the cut for 7 > k, and above
the cut for 7 < k. k? is understood here as having an infinitely small positive imaginary
part.
Let us consider a tapered cavity. The radius r(z) is changed as follows:

r=ayp 2<0; r=gap+ztana 0<2<g; r=aq 2>49g.

Maximum cavity radius is bg = @g + g tan . Before we specify the fields on the surface
of the tapered cavity let us consider the situation in the straight pipe. The electric field
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of a particle in the ultrarelativistic case has only radial (i.e., the normal to the beam pipe
wall) components, which induces an image current in the wall. However, as it was noted
before, the fields of the image current are small for y — co. The normal component of the
induced electric field and the azimuthal component of the induced magnetic field remain
zero. We assume that it is also true on the tapered surface. At the same time, the sum of
the tangential component of the synchronous field of a particle

EP*™ = (2¢/cr)e**sina

and the tangential component of the field of the image current E; on the metallic surface
has to be zero. Therefore, E; = —EP®™ and the fields on the tapered surface are

E, = —E!*'sina, E,=-EP*™cosa, By=0 (59)

E:; = 0 on the beam pipe opening. Therefore, in particular, as previously considered we
could neglect the reflected wave in the beam pipe at zero approximation.
Boundary conditions Eq. {59) are the same as were assumed in consideration of the
diffraction on the washer previously in the section Impedances of a Cavity and a Step,
Equations (57), (58) and Eq. (59) give E; component in the cavity as the surface
integral over the metallic walls of the cavity

8G _oar
E.: [dsg-; Epart (60)
or
ik bo ¥
E ;= —— / dr' / dge TR E—2("))  [k2 _ g2 1, (r1 /B2 — ¢2 H(l)( VkZ = g2
(61)

where z(r') = (r' — ag) cot a. Integrating that over 2, 0 < z < ¢, with the offset r = ag
we obtain the impedance

bo oo _ eiolr—k) ,
Zi(k) = :_c_/ dr’f dr%r——eﬂ(f—k)dr)\/kz — 12Jo(ao Vk? — TQ)HP)(T', /k2 — 72),
[+1:] —o0

(62)
The main contribution is given by 7 =~ \/k/g < k,

2 =3 [~ Da- o013 g00) B o) [ gdry[ 2R gialrmen i+ 45te),

For abrupt change of the radius a = n/2 and that gives the same as Eq. (27) except
that Jo(y) — Jo(-g-y) in Eq. (27) is replaced by Hél)(y) - Hél)( %z). This difference gives
negligible small contribution to the impedance Eq. (29). Otherwise, Eq. (29) has to be

multiplied by the factor
1

~ 2tan(a)/kg

Hence, tapering does not reduce the impedance if /kgtana » 1. The same conclusion
has been done in?!.
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CONCLUSION

The main results of this paper are two-fold. First, the handy formulas describing the
high frequency impedances of the typical elements have been rederived. We also discussed
more difficult problems for which answers are unknown or not well established, such as
the cross-talk between different elements of the system, transition to a periodic array,
and tapering. Secondly, we formulated the iterative method of calculating high-frequency
impedance for arbitrary cavity. In zero approximation it is given by Eq. (4) and Eq. (60).
The field given by Eq. {60) is defined by matching the field E, in the beam pipe. Maxwell
equation divE =0 gives E, in the beam pipe. After, this boundary condition can be found
for the next iteration. The series obtained in this way are similar to the Born series of the
theory of scattering. This approach may help choose the appropriate approximation in a
more rigorous consideration of the problem.

There are some general recommendations for reduction of the impedances. The vac-
uum chamber must be as smooth as possible. All variations of the radius or cross-section
of the beam-pipe have to be minimized. Cross-talk between cavities tends to reduce the
total impedance. Supporting a cylindrycal symmetry is very important for reduction of
the transverse impedance. The use of numeric codes is necessary for an accurate estimate
of the impedances, especially elements without cylindrycal symmetry.
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